Stochastic Planning in Large Search Spaces

نویسنده

  • Bilal Kartal
چکیده

Multi-agent planning approaches are employed for many problems including task allocation, surveillance and video games. In the first part of my thesis, we study two multi-robot planning problems, i.e. patrolling and task allocation. For the patrolling problem, we present a novel stochastic search technique, Monte Carlo Tree Search with Useful Cycles, that can generate optimal cyclic patrol policies with theoretical convergence guarantees. For the multi-robot task allocation problem, we propose an Monte Carlo Tree Search based satisficing method using branch and bound paradigm along with a novel search parallelization technique. In the second part of my thesis, we develop a stochastic multi-agent narrative planner employing MCTS along with new heuristic and pruning methods applicable for other planning domains as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Techniques for Large Markov Decision Process Plan- ning Problems

Planning in Large Domains: The Markov decision process (MDP) formalism has emerged as a powerful representation for control and planning domains that are subject to stochastic effects. In particular, MDPs model situations in which an agent can exactly observe all relevant aspects of the world’s state but in which the effects of the agent’s actions are nondeterministic. Though the theory of MDPs...

متن کامل

Factored MCTS for Large Scale Stochastic Planning

This paper investigates stochastic planning problems with large factored state and action spaces. We show that even with moderate increase in the size of existing challenge problems, the performance of state of the art algorithms deteriorates rapidly, making them ineffective. To address this problem we propose a family of simple but scalable online planning algorithms that combine sampling, as ...

متن کامل

Assistant Agents For Sequential Planning Problems

The problem of optimal planning under uncertainty in collaborative multi-agent domains is known to be deeply intractable but still demands a solution. This thesis will explore principled approximation methods that yield tractable approaches to planning for AI assistants, which allow them to understand the intentions of humans and help them achieve their goals. AI assistants are ubiquitous in vi...

متن کامل

Hindsight Optimization for Probabilistic Planning with Factored Actions

Inspired by the success of the satisfiability approach for deterministic planning, we propose a novel framework for on-line stochastic planning, by embedding the idea of hindsight optimization into a reduction to integer linear programming. In contrast to the previous work using reductions or hindsight optimization, our formulation is general purpose by working with domain specifications over f...

متن کامل

Stochastic Facility Layout Planning Problem: A Metaheuristic and Case Study

Facility layout is one of the most important Operations Management problems due to its direct impact on the financial performance of both private and public firms. Facility layout problem (FLP) with stochastic parameters, unequal area facilities, and grid system modeling is named GSUA-STFLP. This problem has not been worked in the literature so that to solve GSUA-STFLP is our main contribution....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016