Stochastic Planning in Large Search Spaces
نویسنده
چکیده
Multi-agent planning approaches are employed for many problems including task allocation, surveillance and video games. In the first part of my thesis, we study two multi-robot planning problems, i.e. patrolling and task allocation. For the patrolling problem, we present a novel stochastic search technique, Monte Carlo Tree Search with Useful Cycles, that can generate optimal cyclic patrol policies with theoretical convergence guarantees. For the multi-robot task allocation problem, we propose an Monte Carlo Tree Search based satisficing method using branch and bound paradigm along with a novel search parallelization technique. In the second part of my thesis, we develop a stochastic multi-agent narrative planner employing MCTS along with new heuristic and pruning methods applicable for other planning domains as well.
منابع مشابه
Scaling Techniques for Large Markov Decision Process Plan- ning Problems
Planning in Large Domains: The Markov decision process (MDP) formalism has emerged as a powerful representation for control and planning domains that are subject to stochastic effects. In particular, MDPs model situations in which an agent can exactly observe all relevant aspects of the world’s state but in which the effects of the agent’s actions are nondeterministic. Though the theory of MDPs...
متن کاملFactored MCTS for Large Scale Stochastic Planning
This paper investigates stochastic planning problems with large factored state and action spaces. We show that even with moderate increase in the size of existing challenge problems, the performance of state of the art algorithms deteriorates rapidly, making them ineffective. To address this problem we propose a family of simple but scalable online planning algorithms that combine sampling, as ...
متن کاملAssistant Agents For Sequential Planning Problems
The problem of optimal planning under uncertainty in collaborative multi-agent domains is known to be deeply intractable but still demands a solution. This thesis will explore principled approximation methods that yield tractable approaches to planning for AI assistants, which allow them to understand the intentions of humans and help them achieve their goals. AI assistants are ubiquitous in vi...
متن کاملHindsight Optimization for Probabilistic Planning with Factored Actions
Inspired by the success of the satisfiability approach for deterministic planning, we propose a novel framework for on-line stochastic planning, by embedding the idea of hindsight optimization into a reduction to integer linear programming. In contrast to the previous work using reductions or hindsight optimization, our formulation is general purpose by working with domain specifications over f...
متن کاملStochastic Facility Layout Planning Problem: A Metaheuristic and Case Study
Facility layout is one of the most important Operations Management problems due to its direct impact on the financial performance of both private and public firms. Facility layout problem (FLP) with stochastic parameters, unequal area facilities, and grid system modeling is named GSUA-STFLP. This problem has not been worked in the literature so that to solve GSUA-STFLP is our main contribution....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016